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Abstract

Crystals of YAG and Nd:YAG are grown from their molten state by the Czochralski technique. Oxide crystals are semi-transparent to
infrared radiation. In many instances, radiation losses from the bulk of the crystal and melt are quite large. The scattering of radiation in
doped melts can be significant during the growth process. The present study is a numerical simulation of flow and heat transfer during the
growth of YAG and Nd:YAG crystals in a Czochralski process. The importance of radiation in the growth process has been examined. The
heat flux in the melt comprises of contributions from conduction, advection and radiation. The radiative portion of heat transfer comprises
of internal absorption, emission and scattering. It has been calculated in the present work by solving the radiative transfer equation (RTE)
simultaneously with the conservation of energy equation. The Czochralski domain is considered to be an isotropically scattering gray medium.
The radiative properties are assumed to be independent of wavelength and temperature. The boundaries are taken as diffusely emitting anc
reflecting opaque surfaces. The results obtained in the present study clearly show that the losses calculated by including internal radiation are
higher, when compared to surface radiation alone. In addition, the temperature distribution develops skewness with respect to the crystal axis
and thereby influences the shape of the melt—crystal interface. Calculations incorporating the bulk radiation model also show the importance
of enclosure conditions for controlling the crystal growth process.
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1. Introduction crystal occurs around the original seed. The Czochralski ap-
paratus is schematically shown in Fig. 1(a).
Oxides crystals such as YAG and Nd:YAG of high qual- Flow and temperature distribution in the vicinity of the

ity can be grown from their melt in a Czochralski process. crystal determines the shape of the solid-liquid interface.
The details of the Czochralski process for individual appli- The curvature of the melt—crystal interface in turn dictates
cations differ in terms of details, but the central idea is as the gross disorders in the grown crystal and hence its qual-
follows. The crucible is initially charged with the polycrys- ity. The interface shape is thus a quantity of considerable
talline material from which the single crystal is to be grown. importance.
Thermal energy is supplied by a heater surrounding the cru-  Fluid flow in the melt arises from a superposition of
cible, raising the temperature of the charge above its melting buoyancy-driven natural convection, thermocapillary-driven
point. A seed crystal mounted at the end of a rod, is then marangoni convection and crystal and/or crucible rotation-
dipped into the melt. After an appropriate start-up procedure, driven forced convection. Heat transfer occurs in the form
the seed is slowly withdrawn from the melt. Under suitable of conduction and convection within the melt, conduction
thermal conditions, recrystallization in the form of a single \yithin the crystal, gas convection and radiative exchange be-
tween exposed surfaces. In addition, internal radiation can be

* Corresponding author. Tel.: +91 512 2597182; fax: +91 512 2597408, €Xpected to be important during the growth of oxides, such
E-mail addresskmurli@iitk.ac.in (K. Muralidhar). as YAG. This is because of the high temperatures involved
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Fig. 1. (a) Schematic diagram of a Czochralski process for growing YAG crystals. (b) Computational domain showing distinct phases in the apparatus.
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during their growth and the semi-transparency of these ma- Nunes et al. [6] combined the multi-zone adaptive grid
terials to infrared radiation. The YAG melt is doped with Nd generation and curvilinear finite volume scheme of Prasad
atoms that are meant to be incorporated in the grown crys-et al. [7] to a spectral thermal radiation model to predict the
tal at a controlled rate. The semi-transparency of the melt temperature distribution in a Czochralski domain for grow-
and the grown crystal along with scattering enhanced by ing a YAG crystal. The radiative transfer model was based on
the dopant particles both in the melt and the grown crys- the discrete exchange factor method. Absorption and scatter-
tal adds to the overall thermal energy distribution within the ing in the crystal phase alone were considered in terms of the
Czochralski process. albedo of scattering. The individual effects of scattering and
Several mathematical models of the Czochralski processabsorption were however not brought out in the study.
wherein bulk radiation is incorporated in the governing Kobayashi et al. [8] presented a global simulation of an
equations have been reported. Xiao and Derby [1,2] pre- inductively heated Czochralski furnace. The effect of inter-
sented analysis of the roles of natural and forced convectionnal radiative heat transfer in the crystal and melt on the
in the melt during the growth of oxide crystals. The inte- interface inversion was investigated for oxide crystals. The
grated process model (IPM) developed by Derby and Xiao radiative transfer equation in a non-scattering medium was
[3] was employed as the basis of calculations. The model solved using theP; method. The general problem of ra-
treated radiative transport through the crystal alone, while diative transfer involves determining the radiative intensity
the melt was considered opaque. Additionally the crystal from an integro-differential equation in five independent
was assumed to be optically thin, in the sense that only thevariables—three space coordinates and two additional an-
surfaces within the enclosure have an interaction. Deeply gles defined at every point. In tHg, method the directional
convex interfaces towards the melt, in agreement with ex- dependence is expressed as a truncated Fourier series rep-
perimental results, were predicted by this model. The au- resentation in spherical harmonics. This step transforms the
thors suggested that the interface inversion was dependent omadiative transfer equation into a system of simultaneous par-
many of the system details including geometry, rather than tial differential equations in space coordinates. The indlex
crystal rotation alone. In these simulations, the Marangoni represents the truncation level, with= 1 being a low or-
convection at the gas-melt interface was ignored. der approximation. This level of approximation is suitable
A system analysis of heat transfer in the inductively for an optically thick medium but not for optically thin re-
heated Czochralski furnace was carried out for the growth gions. The results obtained in the study [8] suggest that for
of oxide crystals by Tsukada et al. [4] with internal radiative an opaque melt, the critical Reynolds number at which the
heat transfer taken into account. In this model, the crystal interface inversion occurs decreases with the optical thick-
and the melt were assumed to be bounded by vanishinglyness of the crystal. When the melt is semi-transparent, the
thin semi-transparent diffuse gray surfaces, while the cru- critical Reynolds number has a maximum value for a certain
cible was an opaque, diffuse gray surface. The radiative ex-optical thickness of the crystal and melt.
change between the exposed surfaces was calculated using The present work reports detailed numerical simulation
Gebhart’s absorption factor method. The effect of optical of flow and heat transfer during the growth of YAG and
properties of the melt and crystal on flow and temperature Nd:YAG crystals in a Czochralski setup (Fig. 1(a)). A eu-
fields for LiNbOs; was investigated. Calculations revealed tectic composition of YAG, corresponding to a well-defined
that the temperature fields are sensitive to the optical proper-melting point temperature has been considered. Absorption,
ties of the crystal and the melt. The authors observed that theemission, and scattering in the melt as well as the growing
melt—crystal interface shape became more convex towardscrystal are included in the mathematical model. The model
the melt as the optical absorption coefficients of both the is free of the restrictive approximation with respect to op-
crystal and the melt were lowered. Deflections of the in- tical thickness and has a greater degree of generality. The
terface increased as the absorption coefficient of the meltenclosure condition appears as a significant parameter in the
increased, for a fixed value of the crystal absorption coef- simulation. The importance of radiation in fixing the convec-
ficient. tion patterns in the melt, shape of the melt—crystal interface
Kobayashi et al. [5] carried out a numerical study to in- and the pull velocity has been parametrically studied.
vestigate the importance of internal radiative heat transfer in
the melt alone. The model was based on the bulk flow ap-
proximation with a focus on the melt convection. Thig 2. Mathematical formulation
discrete ordinate method was used to solve the equation of
radiative transfer. Two types of boundaries considered atthe The physical domain consists of the melt in the crucible,
melt surface were: (1) opaque and (2) a semi-transparentthe crystal growing out of it, the seed rod, the gas phase
diffuse gray melt surface. Flow fields and isotherms were and the enclosure. The crucible has a curved base that ex-
obtained for a wide range of absorption coefficients in the tends up to 25% of the crucible height. The diameter of the
melt. The influence of Marangoni convection was also inves- crucible is considered to be equal to that of the enclosure.
tigated. The deformation of the melt—crystal interface was The transport processes are taken to be axisymmetric, and
however, not discussed. hence only one half of the apparatus is taken up for analy-
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sis. Fig. 1(b) shows the schematic drawing of the right-half ~ Energy
of the computational domain considered for analysis along 95 Cpi0 _ 1 .
with the applicable boundary conditions. P LV (5iCpiuif) = 5V kiVO)=V-a. (3

o . . Lo ot
A stability analysis of buoyancy-driven convection in a . . .
Czochralski crucible has not been reported in the literature. In the above equations, the thermophysical properties of

: o each phase (represented by suffiare non-dimensionalized
Such an analysis would reveal critical values of parameters

at which the flow would change patterns become unsteadyW'th that of the melt at its melting point temperature. The

. ) unit vector k is along the direction opposed to gravity.
and ultimately become turbulent. The assumption of ax- S .
) . . S . The characteristic length, velocity, pressure and temperature
isymmetry in a Czochralski process can be justified since

L X . used to non-dimensionalize the governing equations and the
the melt Prandtl number is high. For horizontal differen- g geq

tiallv heated fluid | . Ravieiah—B d f' meaning of the symbols are given in the nomenclature.

1afly ge;]e uia ayf:ar mha a};]elgh— enard conngura- When the crystal is rotated, all three components of melt
tion, Kris namL_urtl [9] as shown that the SYmmetW patterns velocity are non-zero. As suggested by Prasad et al. [7] as
are preserved in high Prandtl number fluid® & 10) for

, ) n X ) well as Nunes et al. [6], it is convenient to work with the
Rayleigh numbers in excess of 1At very high Rayleigh  541ar momentum equation rather than the angular veloc-

numbers, the symmetry pattern breaks up and the convectivqty_ Hence, 2 momentum and 1 angular momentum equation
field becomes unsteady. This result is strictly applicable t0 have been solved in the present work.
a horizontal differentially heated fluid layer in a Rayleigh— At the crucible walls and melt/crystal interface, no-slip
Benard configuration (the temperature difference being in gnd the impermeability boundary conditions are applied for
the vertical direction). For a side heated fluid layer, instabil- g components of velocity. Since velocities are the pri-
ities appear at a significantly higher Rayleigh number [10] mary variables in the calculation, pressure boundary condi-
Markatos and Pericleous [11] report 2D turbulent convec- tions cannot be independently prescribed. Instead, pressure
tion in a side heated cavity at a Rayleigh number 31t is specified as a datum value at the center of the crucible.
a Czochralski crucible, the melt experiences temperature dif- The boundary pressures are derived from the internal pres-
ferences in the vertical as well as the horizontal directions. In sure field at the end of the overall computation. Owing to the
addition, part of the melt surface being exposed to gas phasecrystal being pulled, there is an axial component of velocity
lowers heat losses and enforces two dimensionality. Whenat the melt/crystal interface. This is ignored in the bound-
radiation is included in the calculation, the overall symmetry ary conditions because the pulling rate (which is around
of the enclosure is once again felt in the thermal field within 1 mmh~1 in YAG) is very small compared to other ve-
the melt. Hence, we may expect axisymmetry in the flow and locity components. The boundary conditions for the angular
thermal fields for the range of parameters considered in themomentum equation are zero at the crucible walls and free-
present work. Symmetry is further enforced when the crystal slip at the melt—gas interface. At the melt—crystal interface
is given rotation mainly because it weakens buoyancy-driven it is derived from the no-slip condition in terms of rotational
flow. Reynolds number of the crystal as

The flow and temperature fields in all the phases can be,;, _ Rg, x 2
determined from the conservation equations of mass, mo-
mentum and energy. The individual phases in the Czochral-
ski process namely the melt, crystal and gas are treated a
regions of constant density. The subscriptdicates the in-
dividual phase in which the governing equation is solved.
The buoyancy term is treatetih the Boussinesq approxima-
tion. The contribution of radiation is present in the conser-
vation of energy equation. Radiation is one of the modes of
transferring thermal energy in a Czochralski process. It must
compete with the conductive and convective modes of heattion, while the second term on the right-hand side is the

tranifer in the .melt, SOI',d a”‘?' g;s pha;esl. i radiative contribution. For a semi-transparent medium, ra-
The governing equations in dimensionless form are given yjaive heat transfer is evaluated through the divergence of

The melt—crystal interface is considered to be isothermal;
Qence the interface temperature at all times is the fusion
point temperature, correspondingite= 0. The crucible side
walls as well as the curved base are heated, the correspond-
ing boundary condition being = 1. Symmetry boundary
conditions apply to velocity as well as temperature at the
axis of the crucible.

In Eq. (3), the left-hand side represents advection of ther-
mal energy, the first term on the right-hand side is conduc-

as follows: the radiative heat flux, nameW - g,.. It is determined by ac-
Mass counting for absorption, emission and scattering and is given
as [5]
%jtv-('-u-)—o (1) ~ 254
91 pitli) = V.0, =«(46n°T* - G) WhereG:/Ii ds2; (4)
Momentum i
The evaluation of the divergence of the radiative fitng, at
90 U; a point within the medium requires a mathematical descrip-

+ V- (piuiu) =V - (uVu;) — Vp — piGrok  (2)

ot tion of the radiation intensity along all solid angle®;{ at
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that point within the medium. The intensity distribution can 3. Solution of conservation equations
be obtained by solving the conservation equation of radia-
tive intensity, namely the radiative transfer equation (RTE). = The equations of mass, momentum and energy are solved
Along a particular direction($), RTE in an axisymmetric ~ considering a single domain approach wherein the physical
configuration is given as [12-14]: parameters are allowed to vary with respect to the individ-
ual phases. The individual phases in the Czochralski process
Edrl)  _o(I) 1a@D) (namely the melt, crystal and gas) are treated as regions of
roor ta 9z 1 ¢ =BS—pI ) constant density, in effect incompressible. The exception is
that of the buoyancy term which is treatei the Boussi-
where the quantities, 7 and i are direction cosines and nesq approximation. The subscript used for density in the
is the radiation intensity for the discrete directiéh The governing equations (1)—(3) indicates the phase in which the
polar anglep is measured from the-axis. The source term  governing equations are solved. Thus variation in density

is given as permitted in the formulation arises not from changes in pres-
sure and temperature but from a change in the phase itself.
- ) PN i i .
S@ =1 — )l + — / D, 91(E)dR; (6) The overall computational procedure is based on the numer
4 ical treatment of incompressible fluids, in the sense that the

$i=4n pressure is calculated from the mass balance equation and

not the equation of state.
Along with the solution of the field equations, it is re-

All the three surfaces (one for the crucible and two for . ) o .
; . L quired to determine the position of the melt—crystal interface
the enclosure) are considered to be diffusely emitting and re- ; .
flecting. opaque. arav surfaces. The radiative properties Suchand the melt—-gas meniscus. The interfaces are tracked as
bg, Ft) q ,gﬁ_ Y t and 'f five inde prop q @ 1-dimensional entity in a 2-dimensional Euclidean space.
as absorption coetlicient and retractive Indeare assume The position and velocity of the melt—crystal interface are

to be independent of t_e.mperature 6?”‘?' Wayelength. The Sym'governed by energy balance between the heat flux on each
metry boundary condition at the axis is written as

side of the interface and the latent heat release. The posi-
tion of melt-gas meniscus on the other hand is governed
by a force balance among the viscous, pressure and the sur-
face tension forces. A gradient in surface tension introduces
Marangoni number as an appropriate dimensionless quantity
/ (N, - 2.)1(82,) 082 ?n the simulation. C_omputations showed that the gas—melt

interface was practically flat for the range of parameters
(n;-£2,)<0 studied. In addition, the mechanical coupling between the
melt and the gas phase was negligible, while thermally cou-
pling was significant. This is to be expected for fluid—fluid
interfaces that have a great viscosity contrast.

wherel, = n?6 T* is the black body radiation.

For all other surfaces
(ps)
T

I, =¢5lp +

where subscripts ands’ denote the outgoing and incoming
directions §) to the reflecting surfaces respectively, whije

ps are the emissivity and reflectivity of these surfaces. The governing field equations for the entire domain is
The solution of RTE also requires the estimation of the ¢q\eq using a control volume formulation based on the

temperature fi.eld. Temperature figld is obtained by §olving SIMPLER algorithm. The irregular shape of the interfaces
the conservation of energy equation (Eq. (3)) that in U a4 cyrved crucible base are allowed to evolve in response to
requires the estimation of divergence of radiative heat flux e process parameters. Numerically they have been treated
(V-q,). The strong coupling between RTE and energy con- ysing coordinate transformation and body fitted grids. The
servation equation, has been treated in the present work byransformation from the physical space to the computational
the following iterative procedure: space is attained in such a way that the melt—crystal interface
as well as the free surface are made to align with orthogo-
(1) Solve the energy equation by neglecting the contribu- na| coordinate lines. Grids are generated so as to maintain
tion due to internal radiationM- g,) to obtain aninitial  orthogonality along these surfaces. This facilitates easy im-
guess for temperature distribution. plementation of the boundary conditions at these surfaces,
(2) Obtain the black body intensith, using this tempera-  particularly the Marangoni boundary condition at the gas—
ture field to solve RTE. Thus obtain the intensity distri- melt free surface. The numerical treatment of the conserva-
bution in the physical domain. tion equations follows closely the work of Prasad et al. [7].
(3) Use the intensity distribution to obtain the divergence of

the radiative heat flux, Eq. (4). 3.1. Solution of RTE
(4) Solve the energy conservation equation using the calcu-
lated v - g,), to update the temperature field. The solution of RTE determines the radiative flux, that is
(5) Repeat steps (2)—(4) till convergence in temperature is a source term for the energy equation. The numerical treat-
attained. ment of this equation is discussed below.
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m subscript

as

n subscript

Fig. 2. Points representing directions on the surface of a sphere with unit
radius. The points shown are for the octant where 0,& > 0,7 > 0. The
number of points shown is for a§g solution.

The Sy discrete ordinates method originally proposed by
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Pm (Ai jr128i j412.mn — Aij—172Li j—1/2,m.n)

+ En(Air1/2. i li11/2. jmn — Ai—1/2. i li-1/2.j.mn)
+ (Aij+1/2 — Aij-1/2)
|

=BV i(Sij—1ijmn) (8)

The subscripts on the intensities, namelgnd j represent
the axial and radial location of the central point of the spa-
tial control volume. Wheri or j is reduced or enhanced by
1/2, the respective spatial control volume face is indicated.
The subscriptsn andn represent the center of the direc-
tional control volume. The subscriptrepresents thg level
under consideration, andthe € level. Enhancing or dimin-
ishing these subscripts by 2 indicates a point on the face
of the directional control volume. The subscripts on the area
A indicate the face of the spatial control volume, while the
subscripts on the volumg indicate the spatial control vol-
ume. The third term in the above equation is different from
the first two terms. The first two terms have known spatial
areas and directional cosines as coefficients of intensities,
while the third term has the unknown quantityas a coeffi-
cient for the areas. The coefficients in the directional control
volume term are determined by solving the discretized RTE
in an isothermal enclosure [12,16]. In an isothermal enclo-

Am+1/2ndi, jm+1/20 — m—1/2.n i, jm—1/2,n

Wim,n

Chandrasekhar [15] and described by Modest [12] has beeng ;e hjackbody radiation at the temperature of the enclosure

used in the present work to discretize the RTE (Eg. (5)).
In essence théy discrete ordinates method is a numerical
technique that solves the RTE along a number of discrete di-
rections spanning the range of a solid angleof A sketch

of the directions used for 8 solution is shown in Fig. 2 as
points on the surface of a unit sphere. A directional vector
from the origin piercing the surface of the sphere at each of
these points gives the directions in which the RTE is solved.
The total number of discrete directionB, for a givenSy
solution is

_2IN(N+2)
==

whered represents the dimensionality of the problem and
is the number of directions useds$w . The above equation is
useful only for even values @¥. In the present work, values
of d =2 andN = 4 have been used, yielding= 12.

Once all the directions are defined, it remains to spec-
ify the directional weightsw,, ,. The weights are a measure
of the solid angle associated with each direction. Combined
with the directional cosines they lead to a numerical scheme
for performing discrete angular calculations and angular in-

P (7)

tegration. The weights and direction sets used in the present;,

work have been adopted from [12,16].

It is difficult to discretize the third term of Eq. (5); hence
an energy balance on a finite spatial and directional con-
trol volume is performed to obtain the numerical version of
this equation. Following [17-19], the discretized form of the
RTE is written as

prevails at all locations and in all directions. This greatly
simplifies the above equation and yields

Um+1/2,n = Am—1/2,n — wm,n/lm

The valuesay;2_n41/2, =0 for 1 < n < N/2 and
on-n/2-1/20 =0 for N/2>n > N are used to start the
recursion relation for ever level.

An examination of the discretized form of RTE (Eq. (8))
shows that there are eight intensities that need to be deter-
mined, the source function comprising of one blackbody
intensity. Three of the seven intensities are determined in
terms of those calculated at the adjacent spatial and direc-
tional control volumes (namely, boundary conditions). This
leaves four intensities that need to be determined. One of
these four intensities is determined from the discretized form
of RTE; others are obtained by making suitable assumptions
on how the intensities at the control faces are related to the
intensity at the control volume. Assuming, y, vy as the
interpolation factors im, z and¢ directions respectively, we
get

Ii,j,m,n = Vrli,j+1/2,m,n + (1 - Vr)li,j—l/z,m,n
i,j,mmn = VZIi+1/2,j,m,n + (1 - VZ)Iifl/Z,j,m,n
Li jmn = Vo li jmi12n + L= ve) i jm—1/2.n

The three equations are used to eliminate the downstream
intensities from the discretized version of RTE. The resulting

expression can then be solved for the center-point intensity
in terms of the upstream intensities. Once the centre point
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zZ

intensity is found, the above difference equations yield the
downstream control face intensities as well. The weighing
functions are suitably selected to avoid unrealistic negative | u .
values of intensities. N — Q
. L Participating 4
From the equations presented above the radiative inten- medium :
sity as a function of position, direction and temperature can 9 >N
be obtained. With radiative intensity known, the radiant en- W -3 5' Directional
ergy impinging on a certain point can be obtained from the — : L g g;;;dr;"a‘e
discretized form of Eq. (4) as l
N/2  N/2+n /Orgi;_ !

! r
Gi,j = E E Ii,j,m,nwm,n >

n=1m=N/2—n+1 . v .
Spatial Coordinate system
N 3N/2—n+1
+ Z Z I,-_,j,mynwmyn (9) Fig. 3. Spatial and directional coordinate systems used for radiation calcu-
n=N/24+1 m=m—N/2 lations [19].

This value is now used to calculate radiative source term
V - d- (Eq. (4)) and subsequently used in the equation of
conservation of energy for the calculation of temperature.

optical depth =5.0

o
©

3.2. Code validation and grid independence

optical depth =1.0

Validation studies including buoyancy and rotation, flow
and heat transfer, steady and unsteady convection were con-
ducted in the following manner. The computer code was
initially validated against the experiments of [21] and the
unsteady numerical simulation of [22,23]. The comparison,
discussed by Banerjee [24] was found to be excellent.

The radiation calculations have been validated against the
analytical results of Dua and Cheng [20]. The analytical so-
lution is applicable for a gray, cylindrical column of isother-
mal gas held in an enclosure at the same temperature. The 0
configuration considered in the validation exercise is shown Radial Position (cm)
in Fig. 3 wherein a cylindrical column of semi-transparent
material and its midplane are shown. The Iength-to-radius Fig. 4. Comparison of re_sults obtained by_DOM with thpﬁ analytical re_sults
ratio of the cylinder is two. Under radiative equilibrium con- ©f Pua and €heng [20], in terms of normalized average intensity profiles at

" . . i the midplane of a cylindrical, emitting, absorbing column of isothermal gas
ditions, the governing equations are lineadify and hence non-emitting, non-reflecting boundaries.
temperature need not be explicitly specified. Dua and Cheng
[20] have presented profiles of average dimensionless radia-
tion intensity as a function of radial position at the midplane in the figure. The comparison between the present work and
for three different optical depths. These results are comparedthe reference is not quantitatively exact. Differences are to
against the simulation based on DOM in Fig. 4. A good be traced to the fact that some of the boundary conditions
match between the two approaches is to be seen, the maxof Kobayashi et al. [S] involving the crucible material could
imum difference anywhere in the gas being less than 1%. not be truly reproduced in the present study. The compari-
Minor differences arise from the use of a finite number of son is however, qualitatively satisfactory; the sensitivity of
discrete ordinateg= 4) for comparison. The agreement val- the flow field to the absorption coefficient is also correctly
idates the discrete ordinates method and its implementationbrought out.
in the present study. The degree of agreement with an ana- The grid independence study has been conducted using
lytical solution also points towards the accuracy of DOM.  the maximum velocity and the heat flux through the melt-

To validate the numerical algorithm including buoyancy- crystal interface as the sensitivity parameters. Grid indepen-
driven fluid motion and radiation, the configuration of dentsolutions were obtained for a grid size of ¥G8D in the
Kobayashi et al. [5] has been considered. The isothermcomplete Czochralski domain, with a grid of 880 for the
patterns in a Czochralski crucible obtained in the present melt domain and 4& 40 for the crystal domain. These grids
simulation as against the work of [5] are compared in Fig. 5. pertain to an aspect ratir = 1, height ratioHr = 0.5 and
The material in the crucible is LiNb§ The sensitivity of radius ratioRr = 0.5. In other simulations, the grid points
the convective field to absorption coefficient is brought out in the melt and crystal region are proportionately allocated

°
)

— presentresults . ‘
Dua and Cheng [20] ™

o
~

o
)

Normalized Average Intensity

optical depth =0.1

o
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Table 1
Thermophysical properties of molten YAG used in the simulation. Sub-
scripts/ andg denote melt and gas, respectively

Description Symbol  YAG

Density (liquid) ol 3600 kgm™3

Thermal conductivity (liquid) k; 40wWm1k-1

Melting point Ty 2243 K

Melt expansivity B 1.8x10°K™1
Viscosity (liquid) w 468x 1072 kgm1.s1
Heat capacity (liquid) a 800 Jkg~1.k1

Heat of fusion Hy 455x 10° Jkg~1
Emissivity (liquid) £l 0.3

Surface tension (liquid) oc 0.65 Nm~1

Surface tension coefficient (liquid) 4 —35x10°N-m1k-1
Prandtl number Pr 9.2

Table 2

Spectrally and hemispherically averaged radiative properties of YAG at an
average temperature of 2000 K

Radiative parameters Mean value Variation
(’ l\ml Absorption coefficient 5.0mt 0-100.0 n!
| ’ | Scattering coefficient 500.0 0-1000 nv1
| Reactive index of YAG 1.82
Emissivity of enclosure surface 0.3
Emissivity of crucible wall 0.3
Emissivity of melt surface 0.3

guantities, a parametric study has been taken up by vary-
ing the absorption and scattering coefficients over a certain
range. The nominal values of the radiation properties of

(c) (d) YAG are listed in Table 2. The following sections present

results of numerical simulation obtained for the YAG melt

Fig. 5. (a, b) Isotherms obtained py Kobayashi et al. [5] for flow in LiNbO (Pr = 9.2) in the crucible alone, and when it is a part of
melt, Physical parameters considered were= 136, Gr = 467 x 1C°, the entire Czochralski apparatus. The interaction of radia-

Ma =0, (a) x = oo and (b)«x = 0.01; (c,d) Isotherms obtained in the . L .
present work for flow in LiNb@ melt. Physical parameters considered are 110N @nd convection in terms of flow patterns, isotherms, the

Pr =136, Gr = 4.67 x 10°, Ma=0, (c)x = 30 and (d) = 0.01. shape of the melt—crystal interface, and the pull velocity are
discussed.

with respect to the radius ratio of the crystal and the aspect

ratio of the melt. 4.1. Melt convection

Simulations considered for this study are for tempera-
ture differences of 160 and 200 K between the crucible wall ~ Solidification of the material in crystalline form in a
and the melting point of YAG £ 2243 K). The thermo- Czochralski crucible is initiated by cooling the melt through
physical properties utilized in the study are summarized in One or more boundaries. Thus temperature gradients are es-
Table 1. A typical crucible diameter considered is 100 mm. tablished within the superheated molten material. Since fluid
These data corresponds to Grashof numbei§ 2 10* and density is sensitive to temperature, the corresponding den-
2.7 x 10* and Marangoni numbers 475 and 593, respectively. Sity gradients result in buoyancy-driven convection, a major
The crystal rotation rates considered are 0 and 20 rpm whichdriving force for fluid motion in the crucible. In order to im-
correspond to Reynolds numbers of 0 and 408, respectively.prove structural and stoichiometric uniformity and to smooth
out thermal asymmetries in a growing crystal, the growing
crystal is rotated about its axis, as it is pulled. The rotating
4. Resultsand discussion crystal acts as a centrifugal pump drawing the liquid melt
axially, while ejecting it in the radial direction. In addition
Internal radiation calculations are highly sensitive to to natural and forced convection, the Czochralski process
properties such as refractive index, absorption coefficient has thermocapillary (Marangoni) flow near the melt—gas free
and the scattering coefficient. Widely varying values of ab- surface. Since the coefficients of surface tension of most
sorption coefficients for YAG have been reported in Refs. crystal materials in their molten form vary with tempera-
[25,26]. To examine the sensitivity of the solution to these ture, a non-zero temperature gradient along the free surface
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causes a non-constant surface traction, resulting in a finitethe enclosure, and is redistributed in the melt. Eq. (10) forms
shear at the free surface. The flow pattern is further com- the free surface boundary condition for temperature in the
plicated by the heat losses (convective and radiative) at thisenergy equation.
boundary.

Buoyant convection in a YAG melt produces melt—crystal 4.2.1. Effect of absorption
interfaces that are convex into the melt. When the crystal Fig. 6 shows the flow and thermal fields in the semi-
is given a rotation, the centrifugal forces drive a clockwise transparent melt of YAG as the absorption coefficient (
roll that counteracts the thermally driven flow. Thus, when a and hence the optical thickness)(are increased. The
critical rotation rate is exceeded, the interface shape changesero absorption result, corresponding to a non-participating
from convex to flat, and subsequently becomes concave. Themedium, is included for comparison. The right half of the
critical rotation rate has been identified as a function of the cavity comprises of streamlines, while the left half carries
radius ratio and aspect ratio. When thermocapillarity at the isotherms. The arrow affixed to streamlines indicates the
free surface of the melt is included in the model, circulation direction of fluid motion. The direction of fluid motion is
due to buoyancy-driven convection is strengthened. The su-important because flow direction changes from clockwise to
perposition of these two flow mechanisms leads to deeply counter-clockwise, depending on the choice of process pa-

convex melt—crystal interface. rameters. The isotherms shown in Fig. 6 are equally spaced
with an increment ofA6 = 0.1. It is clear that absorption
4.2. Influence of internal radiation on melt convection of radiation does not influence the strength of convection,

the maximum in the stream function being practically un-

Flow and heat transfer in the semi-transparent YAG melt changed. The temperature levels are however, affected. In
contained in the Czochralski crucible is taken up in this sec- addition, the changes in the thermal field lead to a signifi-
tion. The melt absorbs, emits and scatters radiation. The freecant re-distribution of the flow.
surface exposed to gas is taken to be flat; further, it is as-  The distribution of isotherms shows a preferential bunch-
sumed to be an opaque and diffuse gray surface. The melt-ing near the crucible walls. This effect increases with the
crystal interface is at the melting point temperature and is absorption coefficient. Bunching of isotherms near the cru-
also assumed to be an opaque gray surface. Other paramesible wall was earlier observed by Kobayashi et al. [5] for
ters employed in the simulation are listed in Table 2. For simulation of LiINbQ (Pr = 13.6) melt. A possible expla-
the discussion in the present section, the changes in the thernation for this effect is that the radiant energy from the
mal field within the crystal do not influence the calculation. high temperature wall of the crucible is absorbed in the
In this respect, the crystal is passive. However, the crystal melt near the wall itself. As a result of bunching, melt at
serves to enforce an isothermal boundary condition at thea lower temperature below the crystal shifts towards the
melt—crystal interface. In addition, it can impart rotation to wall. The isotherms are increasingly packed near the cru-
the melt as well. The effect of thermal gradients in the crys- cible wall for higher values of the absorption coefficient.
tal and energy exchange with the enclosure are consideredrhe flow structure is organized when there is no absorption,
in Section 4.3. but gets distorted when the absorption coefficient increases.

Energy transferred by radiation at the melt—gas free sur- The flow intensity is slightly larger at an intermediate value
face to the radiatively black wall of the enclosure at a tem- of optical thickness f = 0.075). This is depicted by the
peratureT,., is determined as follows. The energy balance largest value of stream function in the individual figures.

equation at the free surface (denoted by subse}ijst writ- The intensity of convection marginally decreases at higher
ten as values of absorption coefficient. The centre of the convec-
9T tion cell setup by the combined effect of buoyancy and
—k—| = 5‘81(TS4 — Tfo) + e5lp s Marangoni forces shifts upwards, closer to the melt free sur-
on | face as the absorption coefficient increases. Further, there is
T (1—gy) / (N - 2)1(£2)d$2 (10) a horizontal shift in the cell-centre towards the crucible side
.2)<0 wall.

A remarkable change in the flow structure of the melt oc-
Here, suffix! stands for the melt properties. For the present curs at a very high value of the optical thickness (Fig. 6(d)).
work, the free surface properties have been taken to be iden-The flow pattern consists of two cells. The appearance of
tical to those of the melt. Exceptions are possible when the two cells is explained by the fact that a great deal of radiant
free surface is contaminated. energy does not reach the central region of the melt. The cru-
Eqg. (10) incorporates the assumption that the free surfacecible is incapable of sufficiently heating the bulk of the melt.
is opaque. The first term on the right-hand side representsThis leads to low temperatures at the central region when
losses from the free surface to the enclosure. The remainingcompared to the crucible walls and the axis. Cooling of the
terms define energy exchange between the free surface andore has been reported by Xiao and Derby [1] for simulation
the crucible, and include geometrical factors. Since the free of GGG melt Pr = 6). The lower temperature in the core
surface is opaque, radiation from the crucible does not reachdrives two convective loops in the crucible. The inner loop
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(d)

Fig. 6. Effect of absorption on flow and thermal fields in the méit= 1.0, Rr= 0.5, Gr = 2.7 x 10, Ma= 535, Reyt = 0 (no crystal rotation)s = 0.0 (no

scattering); (ay = 0.0, (b)r =0.075, (c)r = 0.25, (d)r =0.75.

(b)

Fig. 7. Effect of Marangoni convection on the flow and thermal fields in the ek 1.0, Rr= 0.5, Gr = 2.7 x 10, Rex =0 (no crystal rotation)g = 0.0
(no scattering)r = 0.25, (a)Ma =0, (b) Ma=535.

(Fig. 6(d)) causes the otherwise deeply convex melt—crystal of driving the flow field. The change in the thermal field is,
interface to move up along the axis of the crucible. however, marginal, for the range of parameters studied.

The effect of increasing Marangoni number on melt con-  Streamlines and isotherms in the YAG melt subject to
vection is brought out in Fig. 7. Surface tension gradients crystal rotation are shown in Fig. 8. The effect of rotation
increase shear at the melt—gas interface. Hence the center o to give rise to multiple cells in the crucible, even when
the flow pattern shifts vertically upwards. There is a mar- the optical thickness is zero. As the optical thickness in-
ginal intensification of the flow field as brought out by an creases, much of the radiant energy is absorbed near the
increase in the maximum value of the stream function. Thus, crucible wall. Hence, the central region between the wall
buoyancy and surface tension gradients are additive in termsand the axis gets progressively cooler. As a result, the inner
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Fig. 8. Effect of absorption on flow and thermal fields in the m&it= 1.0, Rr= 0.5, Gr = 2.7 x 10%, Ma = 535,Reyt = 408 (with crystal rotation)s = 0.0
(no scattering); (ay = 0.0, (b) T = 0.075, (¢)r = 0.25, (d)z =0.75.

forced convection loop gets strengthened. The melt—crystalbeen kept constant at= 0.75 while the scattering coeffi-
interface shape is a wavy pattern due to the two convectioncient is varied over the range 0—-1000 tnThe correspond-
loops, even when = 0. The extent of waviness increases ing albedo of scatteringf) varies over 0 to 0.995. The
as the optical thickness increases. However, absorption onlycrystal is stationary in these calculations. Broadly speak-
marginally affects the rotationally driven thermal field. This ing, the influence of scattering on the convection patterns
observation is in agreement with the predictions of Xiao and is seen to be minor over the range of parameters studied.
Derby [2], who reported that the increase in crystal rotation The influence on the flow and thermal fields is truly in-
rate does not appreciably change the high thermal gradientsignificant forc < 10.0 m~1, namely < 0.83. At higher

melt. values, scattering is observed to have an opposite influence
as compared to absorption. This is understandable because
4.2.2. Effect of scattering scattering augments the irradiation and penetrates deeper

Scattering of radiation is present in YAG as well as YAG into the crucible, partly nullifying the effect of the absorp-
doped with Nd particles. Scattering only redirects the stream tion coefficient. The augmentation is quite pronounced at
of photons; it does not directly affect the energy content of a high values of the scattering coefficient. The isotherms can
given volume. Hence, itinfluences the radiative mode of heat be seen to shift towards the colder crystal surface (away
transfer in an indirect manner. While absorbed energy is con-from the crucible wall) with an increase in the scattering
verted into internal energy of the medium, scattered energy coefficient. Thus, the thermal gradients tend to spread out
is simply redirected and appears as augmentation along animore evenly within the crucible. The flow field, initially
other direction. The re-direction of radiant energy indirectly distorted in the absence of scattering, is more organized,
affects the temperature field in the melt. It is to be noted that as the scattering coefficient increases. Since the tempera-
the expression for divergence of radiative heat flux (Eq. (4)) ture gradients are now present over a greater portion of the
does not contain the scattering coefficient. Instead, it comescrucible cross-section, the intensity of flow field increases
into picture in RTE (Eq. (5)). (specifically, the magnitude of the stream function) with an

The influence of scattering on the flow and temperature increase in the scattering coefficient. The center of the con-
fields in the YAG melt are shown in Fig. 9. The optical vection cell shifts downwards, towards the axis of the cru-
thickness of the melt for this sequence of calculations has cible.
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(d)

Fig. 9. Effect oj scattering on flow and thermal fields in the mit= 1.0, Rr= 0.5, Gr = 2.7 x 104, Ma= 535,Ret=0 (no crystal rotation)r = 0.25, (a)
c=00m1(8=00), (b)c=250m"1(8=0.83),(c)c =5000 m 1 (8 =0.99), (d)¢c =10000 m~1 (3 =0.995).

The influence of scattering in a rotationally driven flow 4.3.1. Effect of absorption
field is shown in Fig. 10. The streamlines and isotherms are  Fig. 11 shows streamlines and isotherms when absorp-
barely affected till the scattering albedo reaches 0.995. Thus,tion through the crystal alone is considered. The melt is
it can be concluded that the role of scattering is insignificant assumed to be transpareny,(= 0) in this calculation. For

when the melt is driven by crystal rotation. a higher absorption coefficient of the crystal) i.e., for

a less transparent crystal, axial heat transfer is augmented
4.3. Internal radiation in the presence of crystal and by absorption of radiation from the crucible walls. Subse-
enclosure quently, energy is lost to the enclosure, resulting in a lower

temperature level in the crystal. The higher average temper-

In a full Czochralski process, internal radiation is ex- ature difference between the melt and the crystal marginally
pected to be significant in the grown crystal as well. In increases the strength of melt flow, increasing further with an
the present section, flow and heat transfer in the completeincrease in the absorption coefficient of the crystal. Owing
Czochralski system comprising of semi-transparent melt andto increased cooling of the crystal the melt—crystal inter-
crystal are considered. The generalized equation of radiativeface moves deeper towards the melt. Since a higher optical
transfer in a discrete direction is solved for the complete do- thickness cools the crystal, the pull velocity required for the
main (involving melt, crystal and gas). Provision is made to growth of a constant diameter crystal increases with absorp-
account for local radiative properties in the appropriate ma- tion coefficient.
terial, and abrupt changes in radiative properties across the Fig. 12 shows streamlines and isotherms in the growth
zone boundaries. The intensity field thus obtained is used toapparatus, when both the crystal and the melt region are con-
evaluate the divergence of the radiative heat flux at all lo- sidered to be semi-transparent. The absorption in the melt
cations in the Czochralski apparatus. The RTE is solved in results in shifting of the isotherms closer to the hot cru-
the entire domain of the apparatus subjected to symmetrycible wall. As a result the centre of the convection cell shifts
boundary condition at the axis, while other walls are as- towards the crucible side wall. The strength of flow is dimin-
sumed to be diffusely emitting and reflecting opaque gray ished as the optical thickness increases, a result discussed in
surfaces. Section 4.2.1. In case of very high absorption, the tempera-
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Fig. 10. Effect of §cattering on flow and thernjal fields in the melt with crys}al rotafioe: 1.0, Rr= 0.5, Gr =27x 10%, Ma = 535,Reyt = 408; 7 = 0.25,
(@) c=0.0m1(8=0.0), (b)c=250m1(8=0.83),(c)c =5000 m1 (8 =0.99), (d)c =10000 m~1 (8 = 0.995).

ture of the central core is low enough, leading to the forma- central core below the crystal. The higher temperature dif-
tion of two convective cells. The solidification of the central ference with respect to the melt—crystal interface leads to an
core at very high optical thickness cannot be ruled out. When intensification of buoyant flow. A marginal reduction in the
both the melt and crystal have a low optical thickness, the pull velocity is seen due to slight heating of the crystal when
melt—crystal interface is observed to be convex towards theit acts as a scattering medium. When both the melt and the
melt. The convexity decreases with an increase in the opticalcrystal scatter radiation, there is a marginal increase in the
thickness; at very high values, the interface becomes con-pull velocity. These results have been discussed further in
cave. The cooling of the crystal accompanied by the cooling [24].
at the core of the crucible results in a significant increase in
pull velocity. 4.3.3. Influence of crystal length

The above discussion shows that radiation interactions of ~ Fig. 13 shows the temperature distribution and melt flow
significance are between the crucible and the melt on onepattern during two stages of crystal pulling process. These
hand, and the crystal with the enclosure. These influence thestages correspond to an increase in crystal length and thus a
shape of the melt—crystal interface and the pull velocity. The reduction in melt height. At each stage, two separate cases
direct interaction between the melt and the crystal is only of are considered.
secondary importance.

(1) Melt is transparent while crystal is semi-transparent

4.3.2. Effect of scattering (z. =0.25); and

Scattering has a minor effect on the overall convective (2) The meltand the crystal are both semi-transpargns(
field, since it only serves to re-distribute energy. At higher 0.25,7, =0.25).
values of optical thickness, the influence of scattering is
barely visible. Scattering within the crystal slightly increases It can be observed that at both stages, the strength of flow
its temperature, and results in a marginal reduction in the marginally increases when the crystal is semi-transparent,
strength of melt flow. Since the crystal is slightly heated while the combined effect of absorption in both the melt
due to scattering, the melt—crystal is less convex. Scatter-and crystal is to cool the core of the melt in the crucible.
ing in the melt, on the other hand, results in heating of the This retards the strength of flow. At the last stage of growth
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Fig. 11. Effect of absorption in the crystal on flow and thermal fields in the full domain of the Czochralski apparatu€.9, Rr = 0.5, Hr = 0.5,
Too = 1400 K, Ty, = 2403 K,Gr = 2.16 x 10%, Ma = 475,Re;t = O (stationary crystal);,, = 0.0; (a)z. = 0.075, (b)z. = 0.75, (¢)z. = 5.0, (d) melt—crystal
interface shapes for (a)—(c).

(very low melt height), the cooling of the core results in The correct pull velocity can be obtained by applying the
the development of two convective cells in the crucible. The Stefan condition for change of phase from the melt to the
melt—crystal interface gets deeply convex towards the melt crystal [27]. This condition requires that the difference be-
due to absorption in the crystal. When both the melt and tween the melt and the crystal heat fluxes is balanced by
the crystal are semi-transparent, the cooling at the core re-the rate of latent heat release. Clearly, changes in the heat
sults in inversion of the melt—crystal interface. This shows fluxes in the respective phases, possibly due to absorption
that enclosure temperature can certainly be used to controland scattering, affect the pull velocity. Specifically, a higher
losses from the melt and the crystal, even when the me-temperature gradient in the crystal raises the pull velocity.
dia are radiatively participating. The enclosure temperature In the present study, the pull velocity required to maintain a
provides an extra degree of freedom to adjust the interfaceconstant crystal diameter has been evaluated at the edge of
shape. the crystal.
Pull velocity has been observed to increase with an in-

4.3.4. Effect of absorption and scattering on pull velocity ~ crease in the optical thickness either in the melt or the crys-

One of the significant aspects of the Czochralski processtal. As the absorption in the crystal is increased the heat flux
is the need to control pull velocity so as to grow a constant through the crystal also increases, resulting, in an increase in
diameter crystal. If the pull velocity is high in comparisonto the pull velocity. An increase in absorption in the melt on the
the crystallization speed, the diameter progressively dimin- other hand displaces the isotherms towards the crucible wall,
ishes. Conversely, there is an increase in the crystal diameterthereby decreasing the heat flux from the melt side. This in
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Fig. 12. Effect of absorption in both the melt and the crystal phase, on flow and thermal fields in the full domain of the Czochralski appas&t9s.
Rr= 0.5, Hr = 0.5, Too = 1400 K, Ty, = 2403 K, Gr = 2.16 x 10, Ma = 475, Ret = O (stationary crystal); (&) = 0.075, 7, = 0.075, (b) 7. = 0.25,
7y = 0.25, ()t = 0.75, 7, = 0.75, (d) melt—crystal interface shapes for (a)—(c).

turn increases the pull velocity. Thus, the combined effect of moves vertically upwards, along the crystal axis. The con-
absorption in the melt as well as the crystal is to raise the vective cell thus formed is in the clockwise direction. The
pull velocity required for maintaining a constant crystal di- resulting isotherms are pushed up along the centre-line of
ameter. For an increase in the optical thickness from zero tothe crucible and the high temperature melt is moved radially
0.75 in the melt and the crystal, the pull velocity was found along the crystal boundary. Under these conditions, ther-
to increase from 1.2 mm~1 to 2.8 mmh~1, for the para- mal gradients are predominantly fixed by the mixing of fluid
meters in Fig. 11. particles induced by rotation. Consequently, the effect of ab-

Scattering has an opposite effect on pull velocity varia- sorption (as well as scattering) is minimal in a rotationally
tion. Scattering in the crystal heats up the crystal leading to driven flow field.
a reduction in the interfacial heat flux and hence the pull ve-
locity.

5. Conclusions

4.3.5. Effect of crystal rotation

As the crystal is rotated, fluid particles in the meltacquire ~ The effects of internal radiation in the Czochralski
a tangential velocity component in the horizontal plane, that process on flow and thermal fields in the melt as well as
in turns sets up a radially outward component of accelera- the overall growth process have been studied. The convec-
tion. This creates a low pressure region below the crystal. tive field is sensitive to the optical thickness, but depends
Consequently, the hot melt from the base of the crucible only weakly on the scattering albedo. Absorption in the
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Fig. 13. Effect of absorption in the melt and crystal on flow and thermal fields in the full domain of the Czochralski process with increase in ctiystal leng
Rr=0.5, Too = 1400 K, Ty, = 2403 K,Gr = 2.16 x 10%, Ma = 475,Re;t = 0, (@)Ar =0.775,Hr = 1, 7, = 0.25, 7, =0, (b) Ar = 0.775,Hr =1, 7. = 0.25,

n = 0.25, (c) melt—crystal interface shapes for (a), (b). £&d)= 0.65, Hr = 1.5, t» = 0.25, 7, =0, (e) Ar = 0.65, Hr = 1.5, . = 0.25, 7, = 0.25,

(f) melt—crystal interface shapes for (d), (e).
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melt is a maximum near the hot crucible walls. As the op-  Absorption results in cooling of the crystal and increases

tical thickness increases, densely packed isotherms near th¢he pull velocity required for growth of a constant diame-

crucible wall are formed. For very high absorption, a low ter crystal. The melt—crystal interface gets deeply convex

temperature region is formed at the core of the crucible. due to crystal cooling. Scattering on the other hand results

Intense cooling of the core at a high value of optical thick- In marginal heating of the crystal. The combined effect of

ness generates two convective cells in the melt flow. As a @Psorption in the melt and crystal can lead to solidifica-

consequence a wavy shape of the interface, concave at thdon Of the melt at its core. The temperature of the enclo-

center and convex towards the edge of the crystal is ob-Sure is seen _to |r_1fluence the melt—crystal interface shape

served. when absorption in both the crystal and the melt are con-
Influence of scattering on the convective field in the melt Sld.?;]eedi'm act of internal radiation diminishes in the bres-

is observed only at high values of the scattering albedo. With ence of chstaI rotation. P

an increase in scattering, the isotherms are seen to shift to-

wards the colder crystal surface (away from the crucible

wall). As a consequence there is a slight increase in the Acknowledgement

strength of the flow field and a shift in the center of the con-
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