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Abstract

Crystals of YAG and Nd:YAG are grown from their molten state by the Czochralski technique. Oxide crystals are semi-transp
infrared radiation. In many instances, radiation losses from the bulk of the crystal and melt are quite large. The scattering of ra
doped melts can be significant during the growth process. The present study is a numerical simulation of flow and heat transfer
growth of YAG and Nd:YAG crystals in a Czochralski process. The importance of radiation in the growth process has been exam
heat flux in the melt comprises of contributions from conduction, advection and radiation. The radiative portion of heat transfer c
of internal absorption, emission and scattering. It has been calculated in the present work by solving the radiative transfer equa
simultaneously with the conservation of energy equation. The Czochralski domain is considered to be an isotropically scattering gra
The radiative properties are assumed to be independent of wavelength and temperature. The boundaries are taken as diffusely
reflecting opaque surfaces. The results obtained in the present study clearly show that the losses calculated by including internal r
higher, when compared to surface radiation alone. In addition, the temperature distribution develops skewness with respect to the
and thereby influences the shape of the melt–crystal interface. Calculations incorporating the bulk radiation model also show the i
of enclosure conditions for controlling the crystal growth process.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Oxides crystals such as YAG and Nd:YAG of high qu
ity can be grown from their melt in a Czochralski proce
The details of the Czochralski process for individual ap
cations differ in terms of details, but the central idea is
follows. The crucible is initially charged with the polycry
talline material from which the single crystal is to be grow
Thermal energy is supplied by a heater surrounding the
cible, raising the temperature of the charge above its me
point. A seed crystal mounted at the end of a rod, is t
dipped into the melt. After an appropriate start-up proced
the seed is slowly withdrawn from the melt. Under suita
thermal conditions, recrystallization in the form of a sing
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E-mail address:kmurli@iitk.ac.in (K. Muralidhar).
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crystal occurs around the original seed. The Czochralsk
paratus is schematically shown in Fig. 1(a).

Flow and temperature distribution in the vicinity of th
crystal determines the shape of the solid–liquid interfa
The curvature of the melt–crystal interface in turn dicta
the gross disorders in the grown crystal and hence its q
ity. The interface shape is thus a quantity of considera
importance.

Fluid flow in the melt arises from a superposition
buoyancy-driven natural convection, thermocapillary-driv
Marangoni convection and crystal and/or crucible rotati
driven forced convection. Heat transfer occurs in the fo
of conduction and convection within the melt, conduct
within the crystal, gas convection and radiative exchange
tween exposed surfaces. In addition, internal radiation ca
expected to be important during the growth of oxides, s
as YAG. This is because of the high temperatures invo
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s

aratus.
Nomenclature

Ar aspect ratio,hm

rc

Cp specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

G radiant energy impinging on a certain point
(irradiation) . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

Gr Grashof number,
gβ(Tw−Tf )r3

c

ν2
o

hc crystal height . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
hm melt height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Hr height ratio,hc

rc

I radiation intensity . . . . . . . . . . . . . . W·m−2·sr−1

k thermal conductivity . . . . . . . . . . . W·m−1·K−1

Ma Marangoni number
dσ
dT

(Tw−Tf )rc
νoµo

n refractive index
p dimensionless pressure scaled byρ0ν

2
o/r2

c

Pr Prandtl number,νo

αo

qr radiative heat flux vector . . . . . . . . . . . . W·m−2

r radial coordinate scaled byrc
rc crucible radius, also characteristic linear

dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Rect Reynolds number of crystal rotation,ωr2

c

νo

Rr radius ratio,rs
rc

rs crystal radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
t dimensionless time
T temperature, suffixw for crucible wall andf

for fusion point . . . . . . . . . . . . . . . . . . . . . . . . . . K
ui dimensionless velocities: axial, radial and

azimuthal scaled byνo

rc

w dimensionless angular momentum whose axis i
in the verticalz-direction

z dimensionless vertical coordinate along the axis
of the crystal and melt

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . m2·s−1

β volume expansion coefficient . . . . . . . . . . . K−1

β̃ albedo of scattering,ς
ς+κ

σ surface tension . . . . . . . . . . . . . . . . . . . . . . N·m−1

σ̃ Stefan–Boltzmann constant,
5.67× 108 W·m−2·K−4

ε emissivity of the material
µ dynamic viscosity . . . . . . . . . . . . . . . . . N·s·m−2

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

Ω solid angle (steradians)
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

θ non-dimensional temperature
(T − Tf )/(Tw − Tf )

ξ̃ , η̃, µ̃ directional coordinates for RTE
ς scattering coefficient . . . . . . . . . . . . . . . . . . . m−1

κ absorption coefficient . . . . . . . . . . . . . . . . . . m−1

τ optical thickness(κ × rc)

Subscripts

i subscript denoting individual phase
0 subscript denoting the reference phase (melt)
b subscript denoting the black body

Fig. 1. (a) Schematic diagram of a Czochralski process for growing YAG crystals. (b) Computational domain showing distinct phases in the app
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during their growth and the semi-transparency of these
terials to infrared radiation. The YAG melt is doped with N
atoms that are meant to be incorporated in the grown c
tal at a controlled rate. The semi-transparency of the m
and the grown crystal along with scattering enhanced
the dopant particles both in the melt and the grown c
tal adds to the overall thermal energy distribution within
Czochralski process.

Several mathematical models of the Czochralski proc
wherein bulk radiation is incorporated in the govern
equations have been reported. Xiao and Derby [1,2]
sented analysis of the roles of natural and forced convec
in the melt during the growth of oxide crystals. The in
grated process model (IPM) developed by Derby and X
[3] was employed as the basis of calculations. The mo
treated radiative transport through the crystal alone, w
the melt was considered opaque. Additionally the cry
was assumed to be optically thin, in the sense that only
surfaces within the enclosure have an interaction. De
convex interfaces towards the melt, in agreement with
perimental results, were predicted by this model. The
thors suggested that the interface inversion was depende
many of the system details including geometry, rather t
crystal rotation alone. In these simulations, the Marang
convection at the gas-melt interface was ignored.

A system analysis of heat transfer in the inductiv
heated Czochralski furnace was carried out for the gro
of oxide crystals by Tsukada et al. [4] with internal radiat
heat transfer taken into account. In this model, the cry
and the melt were assumed to be bounded by vanishi
thin semi-transparent diffuse gray surfaces, while the
cible was an opaque, diffuse gray surface. The radiative
change between the exposed surfaces was calculated
Gebhart’s absorption factor method. The effect of opt
properties of the melt and crystal on flow and tempera
fields for LiNbO3 was investigated. Calculations reveal
that the temperature fields are sensitive to the optical pro
ties of the crystal and the melt. The authors observed tha
melt–crystal interface shape became more convex tow
the melt as the optical absorption coefficients of both
crystal and the melt were lowered. Deflections of the
terface increased as the absorption coefficient of the
increased, for a fixed value of the crystal absorption co
ficient.

Kobayashi et al. [5] carried out a numerical study to
vestigate the importance of internal radiative heat transfe
the melt alone. The model was based on the bulk flow
proximation with a focus on the melt convection. TheSN

discrete ordinate method was used to solve the equatio
radiative transfer. Two types of boundaries considered a
melt surface were: (1) opaque and (2) a semi-transpa
diffuse gray melt surface. Flow fields and isotherms w
obtained for a wide range of absorption coefficients in
melt. The influence of Marangoni convection was also inv
tigated. The deformation of the melt–crystal interface w
however, not discussed.
n

g

f

t

Nunes et al. [6] combined the multi-zone adaptive g
generation and curvilinear finite volume scheme of Pra
et al. [7] to a spectral thermal radiation model to predict
temperature distribution in a Czochralski domain for gro
ing a YAG crystal. The radiative transfer model was based
the discrete exchange factor method. Absorption and sca
ing in the crystal phase alone were considered in terms o
albedo of scattering. The individual effects of scattering
absorption were however not brought out in the study.

Kobayashi et al. [8] presented a global simulation of
inductively heated Czochralski furnace. The effect of in
nal radiative heat transfer in the crystal and melt on
interface inversion was investigated for oxide crystals. T
radiative transfer equation in a non-scattering medium
solved using theP1 method. The general problem of r
diative transfer involves determining the radiative intens
from an integro-differential equation in five independe
variables—three space coordinates and two additiona
gles defined at every point. In thePN method the directiona
dependence is expressed as a truncated Fourier serie
resentation in spherical harmonics. This step transforms
radiative transfer equation into a system of simultaneous
tial differential equations in space coordinates. The indeN

represents the truncation level, withN = 1 being a low or-
der approximation. This level of approximation is suita
for an optically thick medium but not for optically thin re
gions. The results obtained in the study [8] suggest tha
an opaque melt, the critical Reynolds number at which
interface inversion occurs decreases with the optical th
ness of the crystal. When the melt is semi-transparent
critical Reynolds number has a maximum value for a cer
optical thickness of the crystal and melt.

The present work reports detailed numerical simula
of flow and heat transfer during the growth of YAG a
Nd:YAG crystals in a Czochralski setup (Fig. 1(a)). A e
tectic composition of YAG, corresponding to a well-defin
melting point temperature has been considered. Absorp
emission, and scattering in the melt as well as the grow
crystal are included in the mathematical model. The mo
is free of the restrictive approximation with respect to o
tical thickness and has a greater degree of generality.
enclosure condition appears as a significant parameter i
simulation. The importance of radiation in fixing the conve
tion patterns in the melt, shape of the melt–crystal interf
and the pull velocity has been parametrically studied.

2. Mathematical formulation

The physical domain consists of the melt in the crucib
the crystal growing out of it, the seed rod, the gas ph
and the enclosure. The crucible has a curved base tha
tends up to 25% of the crucible height. The diameter of
crucible is considered to be equal to that of the enclos
The transport processes are taken to be axisymmetric
hence only one half of the apparatus is taken up for an
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sis. Fig. 1(b) shows the schematic drawing of the right-h
of the computational domain considered for analysis al
with the applicable boundary conditions.

A stability analysis of buoyancy-driven convection in
Czochralski crucible has not been reported in the literat
Such an analysis would reveal critical values of parame
at which the flow would change patterns become unste
and ultimately become turbulent. The assumption of
isymmetry in a Czochralski process can be justified si
the melt Prandtl number is high. For horizontal differe
tially heated fluid layer in a Rayleigh–Benard configu
tion, Krishnamurti [9] has shown that the symmetry patte
are preserved in high Prandtl number fluids (Pr > 10) for
Rayleigh numbers in excess of 104. At very high Rayleigh
numbers, the symmetry pattern breaks up and the conve
field becomes unsteady. This result is strictly applicabl
a horizontal differentially heated fluid layer in a Rayleig
Benard configuration (the temperature difference bein
the vertical direction). For a side heated fluid layer, insta
ities appear at a significantly higher Rayleigh number [
Markatos and Pericleous [11] report 2D turbulent conv
tion in a side heated cavity at a Rayleigh number of 1012. In
a Czochralski crucible, the melt experiences temperature
ferences in the vertical as well as the horizontal directions
addition, part of the melt surface being exposed to gas p
lowers heat losses and enforces two dimensionality. W
radiation is included in the calculation, the overall symme
of the enclosure is once again felt in the thermal field wit
the melt. Hence, we may expect axisymmetry in the flow
thermal fields for the range of parameters considered in
present work. Symmetry is further enforced when the cry
is given rotation mainly because it weakens buoyancy-dr
flow.

The flow and temperature fields in all the phases can
determined from the conservation equations of mass,
mentum and energy. The individual phases in the Czoch
ski process namely the melt, crystal and gas are treate
regions of constant density. The subscripti indicates the in-
dividual phase in which the governing equation is solv
The buoyancy term is treatedvia the Boussinesq approxima
tion. The contribution of radiation is present in the cons
vation of energy equation. Radiation is one of the mode
transferring thermal energy in a Czochralski process. It m
compete with the conductive and convective modes of
transfer in the melt, solid and gas phases.

The governing equations in dimensionless form are g
as follows:

Mass:

∂ρ̄i

∂t
+ ∇ · (ρ̄iui ) = 0 (1)

Momentum:

∂ρ̄iui

∂t
+ ∇ · (ρ̄iuiui ) = ∇ · (µi∇ui ) − ∇p − ρiGr θ k̂ (2)
s

Energy:

∂ρ̄i
�Cpiθ

∂t
+ ∇ · (ρ̄i

�Cpiuiθ) = 1

Pr
∇ · (k̄i∇θ) − ∇ · qr (3)

In the above equations, the thermophysical propertie
each phase (represented by suffixi) are non-dimensionalize
with that of the melt at its melting point temperature. T
unit vector k̂ is along the direction opposed to gravi
The characteristic length, velocity, pressure and tempera
used to non-dimensionalize the governing equations an
meaning of the symbols are given in the nomenclature.

When the crystal is rotated, all three components of m
velocity are non-zero. As suggested by Prasad et al. [7
well as Nunes et al. [6], it is convenient to work with t
angular momentum equation rather than the angular ve
ity. Hence, 2 momentum and 1 angular momentum equa
have been solved in the present work.

At the crucible walls and melt/crystal interface, no-s
and the impermeability boundary conditions are applied
all components of velocity. Since velocities are the p
mary variables in the calculation, pressure boundary co
tions cannot be independently prescribed. Instead, pres
is specified as a datum value at the center of the cruc
The boundary pressures are derived from the internal p
sure field at the end of the overall computation. Owing to
crystal being pulled, there is an axial component of velo
at the melt/crystal interface. This is ignored in the bou
ary conditions because the pulling rate (which is aro
1 mm·h−1 in YAG) is very small compared to other ve
locity components. The boundary conditions for the ang
momentum equation are zero at the crucible walls and f
slip at the melt–gas interface. At the melt–crystal interf
it is derived from the no-slip condition in terms of rotation
Reynolds number of the crystal as

w = Rect × r2

The melt–crystal interface is considered to be isotherm
hence the interface temperature at all times is the fu
point temperature, corresponding toθ = 0. The crucible side
walls as well as the curved base are heated, the corresp
ing boundary condition beingθ = 1. Symmetry boundary
conditions apply to velocity as well as temperature at
axis of the crucible.

In Eq. (3), the left-hand side represents advection of t
mal energy, the first term on the right-hand side is cond
tion, while the second term on the right-hand side is
radiative contribution. For a semi-transparent medium,
diative heat transfer is evaluated through the divergenc
the radiative heat flux, namely∇ · qr . It is determined by ac
counting for absorption, emission and scattering and is g
as [5]

∇ · qr = κ
(
4σ̃ n2T 4 − G

)
whereG =

∫
4π

Ii dΩi (4)

The evaluation of the divergence of the radiative flux∇ ·qr at
a point within the medium requires a mathematical desc
tion of the radiation intensity along all solid angles (Ωi ) at
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that point within the medium. The intensity distribution c
be obtained by solving the conservation equation of ra
tive intensity, namely the radiative transfer equation (RT
Along a particular direction(ŝ), RTE in an axisymmetric
configuration is given as [12–14]:

ξ̃

r

∂(rI )

∂r
+ µ̃

∂(I )

∂z
− 1

r

∂(η̃I )

∂φ
= βS − βI (5)

where the quantities̃ξ , η̃ andµ̃ are direction cosines andI
is the radiation intensity for the discrete directionΩ . The
polar angleφ is measured from thez-axis. The source term
is given as

S(ŝ) = (1− ω)Ib + ω

4π

∫
Ωi=4π

Φ(ŝi , ŝ)I (ŝi )dΩi (6)

whereIb = n2σ̃ T 4 is the black body radiation.
All the three surfaces (one for the crucible and two

the enclosure) are considered to be diffusely emitting and
flecting, opaque, gray surfaces. The radiative properties
as absorption coefficient and refractive indexn are assumed
to be independent of temperature and wavelength. The s
metry boundary condition at the axis is written as

Is = Is′

For all other surfaces

Is = εsIb + (ρs)

π

∫
(ns ·Ωs′ )<0

(ns · Ωs′)I (Ωs′)dΩs′

where subscriptss ands′ denote the outgoing and incomin
directions (̂s) to the reflecting surfaces respectively, whileεs ,
ρs are the emissivity and reflectivity of these surfaces.

The solution of RTE also requires the estimation of
temperature field. Temperature field is obtained by solv
the conservation of energy equation (Eq. (3)) that in t
requires the estimation of divergence of radiative heat
(∇ · qr ). The strong coupling between RTE and energy c
servation equation, has been treated in the present wo
the following iterative procedure:

(1) Solve the energy equation by neglecting the contr
tion due to internal radiation, (∇ · qr ) to obtain an initial
guess for temperature distribution.

(2) Obtain the black body intensityIb using this tempera
ture field to solve RTE. Thus obtain the intensity dis
bution in the physical domain.

(3) Use the intensity distribution to obtain the divergence
the radiative heat flux, Eq. (4).

(4) Solve the energy conservation equation using the ca
lated (∇ · qr ), to update the temperature field.

(5) Repeat steps (2)–(4) till convergence in temperatur
attained.
-

3. Solution of conservation equations

The equations of mass, momentum and energy are so
considering a single domain approach wherein the phys
parameters are allowed to vary with respect to the indi
ual phases. The individual phases in the Czochralski pro
(namely the melt, crystal and gas) are treated as region
constant density, in effect incompressible. The exceptio
that of the buoyancy term which is treatedvia the Boussi-
nesq approximation. The subscript used for density in
governing equations (1)–(3) indicates the phase in which
governing equations are solved. Thus variation in den
permitted in the formulation arises not from changes in p
sure and temperature but from a change in the phase i
The overall computational procedure is based on the nu
ical treatment of incompressible fluids, in the sense that
pressure is calculated from the mass balance equation
not the equation of state.

Along with the solution of the field equations, it is r
quired to determine the position of the melt–crystal interf
and the melt–gas meniscus. The interfaces are tracke
a 1-dimensional entity in a 2-dimensional Euclidean spa
The position and velocity of the melt–crystal interface
governed by energy balance between the heat flux on
side of the interface and the latent heat release. The p
tion of melt–gas meniscus on the other hand is gover
by a force balance among the viscous, pressure and the
face tension forces. A gradient in surface tension introdu
Marangoni number as an appropriate dimensionless qua
in the simulation. Computations showed that the gas–m
interface was practically flat for the range of parame
studied. In addition, the mechanical coupling between
melt and the gas phase was negligible, while thermally c
pling was significant. This is to be expected for fluid–flu
interfaces that have a great viscosity contrast.

The governing field equations for the entire domain
solved using a control volume formulation based on
SIMPLER algorithm. The irregular shape of the interfac
and curved crucible base are allowed to evolve in respon
the process parameters. Numerically they have been tre
using coordinate transformation and body fitted grids. T
transformation from the physical space to the computatio
space is attained in such a way that the melt–crystal inter
as well as the free surface are made to align with ortho
nal coordinate lines. Grids are generated so as to main
orthogonality along these surfaces. This facilitates easy
plementation of the boundary conditions at these surfa
particularly the Marangoni boundary condition at the g
melt free surface. The numerical treatment of the conse
tion equations follows closely the work of Prasad et al. [7

3.1. Solution of RTE

The solution of RTE determines the radiative flux, tha
a source term for the energy equation. The numerical tr
ment of this equation is discussed below.
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Fig. 2. Points representing directions on the surface of a sphere with
radius. The points shown are for the octant whereµ̃ � 0, ξ̃ � 0, η̃ � 0. The
number of points shown is for anS8 solution.

TheSN discrete ordinates method originally proposed
Chandrasekhar [15] and described by Modest [12] has b
used in the present work to discretize the RTE (Eq. (
In essence theSN discrete ordinates method is a numeri
technique that solves the RTE along a number of discret
rections spanning the range of a solid angle of 4π . A sketch
of the directions used for aS8 solution is shown in Fig. 2 a
points on the surface of a unit sphere. A directional ve
from the origin piercing the surface of the sphere at eac
these points gives the directions in which the RTE is solv
The total number of discrete directions,P , for a givenSN

solution is

P = 2dN(N + 2)

8
(7)

whered represents the dimensionality of the problem andN

is the number of directions used inSN . The above equation i
useful only for even values ofN . In the present work, value
of d = 2 andN = 4 have been used, yieldingP = 12.

Once all the directions are defined, it remains to sp
ify the directional weights,wm,n. The weights are a measu
of the solid angle associated with each direction. Comb
with the directional cosines they lead to a numerical sch
for performing discrete angular calculations and angular
tegration. The weights and direction sets used in the pre
work have been adopted from [12,16].

It is difficult to discretize the third term of Eq. (5); henc
an energy balance on a finite spatial and directional c
trol volume is performed to obtain the numerical version
this equation. Following [17–19], the discretized form of t
RTE is written as
t

µ̃m(Ai,j+1/2Ii,j+1/2,m,n − Ai,j−1/2Ii,j−1/2,m,n)

+ ξ̃n(Ai+1/2,j Ii+1/2,j,m,n − Ai−1/2,j Ii−1/2,j,m,n)

+ (Ai,j+1/2 − Ai,j−1/2)

×
[
αm+1/2,nIi,j,m+1/2,n − αm−1/2,nIi,j,m−1/2,n

wm,n

]

= βVi,j (Si,j − Ii,j,m,n) (8)

The subscripts on the intensities, namelyi andj represent
the axial and radial location of the central point of the s
tial control volume. Wheni or j is reduced or enhanced b
1/2, the respective spatial control volume face is indica
The subscriptsm and n represent the center of the dire
tional control volume. The subscriptm represents thẽµ level
under consideration, andn the ξ̃ level. Enhancing or dimin
ishing these subscripts by 1/2 indicates a point on the fac
of the directional control volume. The subscripts on the a
A indicate the face of the spatial control volume, while
subscripts on the volumeV indicate the spatial control vo
ume. The third term in the above equation is different fr
the first two terms. The first two terms have known spa
areas and directional cosines as coefficients of intens
while the third term has the unknown quantityα as a coeffi-
cient for the areas. The coefficients in the directional con
volume term are determined by solving the discretized R
in an isothermal enclosure [12,16]. In an isothermal en
sure, blackbody radiation at the temperature of the enclo
prevails at all locations and in all directions. This grea
simplifies the above equation and yields

αm+1/2,n = αm−1/2,n − wm,nµ̃m

The values αN/2−n+1/2,n = 0 for 1 � n � N/2 and
αn−N/2−1/2,n = 0 for N/2 � n � N are used to start th
recursion relation for everỹξ level.

An examination of the discretized form of RTE (Eq. (8
shows that there are eight intensities that need to be d
mined, the source function comprising of one blackbo
intensity. Three of the seven intensities are determine
terms of those calculated at the adjacent spatial and d
tional control volumes (namely, boundary conditions). T
leaves four intensities that need to be determined. On
these four intensities is determined from the discretized f
of RTE; others are obtained by making suitable assumpt
on how the intensities at the control faces are related to
intensity at the control volume. Assumingγr , γz, γφ as the
interpolation factors inr , z andφ directions respectively, w
get

Ii,j,m,n = γrIi,j+1/2,m,n + (1− γr)Ii,j−1/2,m,n

Ii,j,m,n = γzIi+1/2,j,m,n + (1− γz)Ii−1/2,j,m,n

Ii,j,m,n = γφIi,j,m+1/2,n + (1− γφ)Ii,j,m−1/2,n

The three equations are used to eliminate the downstr
intensities from the discretized version of RTE. The result
expression can then be solved for the center-point inten
in terms of the upstream intensities. Once the centre p
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intensity is found, the above difference equations yield
downstream control face intensities as well. The weigh
functions are suitably selected to avoid unrealistic nega
values of intensities.

From the equations presented above the radiative in
sity as a function of position, direction and temperature
be obtained. With radiative intensity known, the radiant
ergy impinging on a certain point can be obtained from
discretized form of Eq. (4) as

Gi,j =
N/2∑
n=1

N/2+n∑
m=N/2−n+1

Ii,j,m,nwm,n

+
N∑

n=N/2+1

3N/2−n+1∑
m=m−N/2

Ii,j,m,nwm,n (9)

This value is now used to calculate radiative source t
∇ · qr (Eq. (4)) and subsequently used in the equation
conservation of energy for the calculation of temperature

3.2. Code validation and grid independence

Validation studies including buoyancy and rotation, fl
and heat transfer, steady and unsteady convection were
ducted in the following manner. The computer code w
initially validated against the experiments of [21] and
unsteady numerical simulation of [22,23]. The comparis
discussed by Banerjee [24] was found to be excellent.

The radiation calculations have been validated agains
analytical results of Dua and Cheng [20]. The analytical
lution is applicable for a gray, cylindrical column of isothe
mal gas held in an enclosure at the same temperature
configuration considered in the validation exercise is sho
in Fig. 3 wherein a cylindrical column of semi-transpare
material and its midplane are shown. The length-to-rad
ratio of the cylinder is two. Under radiative equilibrium co
ditions, the governing equations are linear inT 4, and hence
temperature need not be explicitly specified. Dua and Ch
[20] have presented profiles of average dimensionless ra
tion intensity as a function of radial position at the midpla
for three different optical depths. These results are comp
against the simulation based on DOM in Fig. 4. A go
match between the two approaches is to be seen, the
imum difference anywhere in the gas being less than
Minor differences arise from the use of a finite number
discrete ordinates(= 4) for comparison. The agreement va
idates the discrete ordinates method and its implementa
in the present study. The degree of agreement with an
lytical solution also points towards the accuracy of DOM

To validate the numerical algorithm including buoyanc
driven fluid motion and radiation, the configuration
Kobayashi et al. [5] has been considered. The isoth
patterns in a Czochralski crucible obtained in the pres
simulation as against the work of [5] are compared in Fig
The material in the crucible is LiNbO3. The sensitivity of
the convective field to absorption coefficient is brought
-

e

-

-

-

Fig. 3. Spatial and directional coordinate systems used for radiation c
lations [19].

Fig. 4. Comparison of results obtained by DOM with the analytical res
of Dua and Cheng [20], in terms of normalized average intensity profile
the midplane of a cylindrical, emitting, absorbing column of isothermal
with non-emitting, non-reflecting boundaries.

in the figure. The comparison between the present work
the reference is not quantitatively exact. Differences ar
be traced to the fact that some of the boundary condit
of Kobayashi et al. [5] involving the crucible material cou
not be truly reproduced in the present study. The comp
son is however, qualitatively satisfactory; the sensitivity
the flow field to the absorption coefficient is also correc
brought out.

The grid independence study has been conducted u
the maximum velocity and the heat flux through the me
crystal interface as the sensitivity parameters. Grid indep
dent solutions were obtained for a grid size of 160×80 in the
complete Czochralski domain, with a grid of 80× 80 for the
melt domain and 40×40 for the crystal domain. These grid
pertain to an aspect ratioAr = 1, height ratioHr = 0.5 and
radius ratioRr = 0.5. In other simulations, the grid poin
in the melt and crystal region are proportionately alloca
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Fig. 5. (a, b) Isotherms obtained by Kobayashi et al. [5] for flow in LiNb3
melt. Physical parameters considered werePr = 13.6, Gr = 4.67× 105,
Ma = 0, (a) κ = ∞ and (b) κ = 0.01; (c, d) Isotherms obtained in th
present work for flow in LiNbO3 melt. Physical parameters considered
Pr = 13.6, Gr = 4.67× 105, Ma= 0, (c)κ = 30 and (d)κ = 0.01.

with respect to the radius ratio of the crystal and the as
ratio of the melt.

Simulations considered for this study are for tempe
ture differences of 160 and 200 K between the crucible w
and the melting point of YAG (= 2243 K). The thermo-
physical properties utilized in the study are summarize
Table 1. A typical crucible diameter considered is 100 m
These data corresponds to Grashof numbers 2.16× 104 and
2.7×104 and Marangoni numbers 475 and 593, respectiv
The crystal rotation rates considered are 0 and 20 rpm w
correspond to Reynolds numbers of 0 and 408, respecti

4. Results and discussion

Internal radiation calculations are highly sensitive
properties such as refractive index, absorption coeffic
and the scattering coefficient. Widely varying values of
sorption coefficients for YAG have been reported in Re
[25,26]. To examine the sensitivity of the solution to the
Table 1
Thermophysical properties of molten YAG used in the simulation. S
scriptsl andg denote melt and gas, respectively

Description Symbol YAG

Density (liquid) ρl 3600 kg·m−3

Thermal conductivity (liquid) kl 4.0 W·m−1·K−1

Melting point Tf 2243 K
Melt expansivity β 1.8× 10−5 K−1

Viscosity (liquid) µl 4.68× 10−2 kg·m−1·s−1

Heat capacity (liquid) cl 800 J·kg−1·K−1

Heat of fusion Hf 4.55× 105 J·kg−1

Emissivity (liquid) εl 0.3
Surface tension (liquid) σc 0.65 N·m−1

Surface tension coefficient (liquid) dσ
dT

−3.5× 10−5 N·m−1·K−1

Prandtl number Pr 9.2

Table 2
Spectrally and hemispherically averaged radiative properties of YAG a
average temperature of 2000 K

Radiative parameters Mean value Variation

Absorption coefficient 5.0 m−1 0–100.0 m−1

Scattering coefficient 500.0 m−1 0–1000 m−1

Reactive index of YAG 1.82
Emissivity of enclosure surface 0.3
Emissivity of crucible wall 0.3
Emissivity of melt surface 0.3

quantities, a parametric study has been taken up by v
ing the absorption and scattering coefficients over a ce
range. The nominal values of the radiation properties
YAG are listed in Table 2. The following sections pres
results of numerical simulation obtained for the YAG m
(Pr = 9.2) in the crucible alone, and when it is a part
the entire Czochralski apparatus. The interaction of ra
tion and convection in terms of flow patterns, isotherms,
shape of the melt–crystal interface, and the pull velocity
discussed.

4.1. Melt convection

Solidification of the material in crystalline form in
Czochralski crucible is initiated by cooling the melt throu
one or more boundaries. Thus temperature gradients ar
tablished within the superheated molten material. Since
density is sensitive to temperature, the corresponding
sity gradients result in buoyancy-driven convection, a m
driving force for fluid motion in the crucible. In order to im
prove structural and stoichiometric uniformity and to smo
out thermal asymmetries in a growing crystal, the grow
crystal is rotated about its axis, as it is pulled. The rota
crystal acts as a centrifugal pump drawing the liquid m
axially, while ejecting it in the radial direction. In additio
to natural and forced convection, the Czochralski proc
has thermocapillary (Marangoni) flow near the melt–gas
surface. Since the coefficients of surface tension of m
crystal materials in their molten form vary with tempe
ture, a non-zero temperature gradient along the free su
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causes a non-constant surface traction, resulting in a fi
shear at the free surface. The flow pattern is further c
plicated by the heat losses (convective and radiative) at
boundary.

Buoyant convection in a YAG melt produces melt–crys
interfaces that are convex into the melt. When the cry
is given a rotation, the centrifugal forces drive a clockw
roll that counteracts the thermally driven flow. Thus, whe
critical rotation rate is exceeded, the interface shape cha
from convex to flat, and subsequently becomes concave
critical rotation rate has been identified as a function of
radius ratio and aspect ratio. When thermocapillarity at
free surface of the melt is included in the model, circulat
due to buoyancy-driven convection is strengthened. The
perposition of these two flow mechanisms leads to de
convex melt–crystal interface.

4.2. Influence of internal radiation on melt convection

Flow and heat transfer in the semi-transparent YAG m
contained in the Czochralski crucible is taken up in this s
tion. The melt absorbs, emits and scatters radiation. The
surface exposed to gas is taken to be flat; further, it is
sumed to be an opaque and diffuse gray surface. The m
crystal interface is at the melting point temperature an
also assumed to be an opaque gray surface. Other par
ters employed in the simulation are listed in Table 2.
the discussion in the present section, the changes in the
mal field within the crystal do not influence the calculatio
In this respect, the crystal is passive. However, the cry
serves to enforce an isothermal boundary condition at
melt–crystal interface. In addition, it can impart rotation
the melt as well. The effect of thermal gradients in the cr
tal and energy exchange with the enclosure are consid
in Section 4.3.

Energy transferred by radiation at the melt–gas free
face to the radiatively black wall of the enclosure at a te
peratureT∞, is determined as follows. The energy balan
equation at the free surface (denoted by subscripts) is writ-
ten as

−kl

∂T

∂n

∣∣∣∣
s

= σ̃ εl

(
T 4

s − T 4∞
) + εsIb,s

+ (1− εs)

∫
(ns ·Ω)<0

(ns · Ω)I (Ω)dΩ (10)

Here, suffixl stands for the melt properties. For the pres
work, the free surface properties have been taken to be i
tical to those of the melt. Exceptions are possible when
free surface is contaminated.

Eq. (10) incorporates the assumption that the free sur
is opaque. The first term on the right-hand side repres
losses from the free surface to the enclosure. The rema
terms define energy exchange between the free surface
the crucible, and include geometrical factors. Since the
surface is opaque, radiation from the crucible does not re
s

-

-

-

d

the enclosure, and is redistributed in the melt. Eq. (10) fo
the free surface boundary condition for temperature in
energy equation.

4.2.1. Effect of absorption
Fig. 6 shows the flow and thermal fields in the sem

transparent melt of YAG as the absorption coefficientκ)
and hence the optical thickness (τ ) are increased. Th
zero absorption result, corresponding to a non-participa
medium, is included for comparison. The right half of t
cavity comprises of streamlines, while the left half carr
isotherms. The arrow affixed to streamlines indicates
direction of fluid motion. The direction of fluid motion i
important because flow direction changes from clockwis
counter-clockwise, depending on the choice of process
rameters. The isotherms shown in Fig. 6 are equally sp
with an increment of�θ = 0.1. It is clear that absorptio
of radiation does not influence the strength of convect
the maximum in the stream function being practically u
changed. The temperature levels are however, affecte
addition, the changes in the thermal field lead to a sign
cant re-distribution of the flow.

The distribution of isotherms shows a preferential bun
ing near the crucible walls. This effect increases with
absorption coefficient. Bunching of isotherms near the c
cible wall was earlier observed by Kobayashi et al. [5]
simulation of LiNbO3 (Pr = 13.6) melt. A possible expla
nation for this effect is that the radiant energy from
high temperature wall of the crucible is absorbed in
melt near the wall itself. As a result of bunching, melt
a lower temperature below the crystal shifts towards
wall. The isotherms are increasingly packed near the
cible wall for higher values of the absorption coefficie
The flow structure is organized when there is no absorpt
but gets distorted when the absorption coefficient increa
The flow intensity is slightly larger at an intermediate va
of optical thickness (τ = 0.075). This is depicted by th
largest value of stream function in the individual figur
The intensity of convection marginally decreases at hig
values of absorption coefficient. The centre of the conv
tion cell setup by the combined effect of buoyancy a
Marangoni forces shifts upwards, closer to the melt free
face as the absorption coefficient increases. Further, the
a horizontal shift in the cell-centre towards the crucible s
wall.

A remarkable change in the flow structure of the melt
curs at a very high value of the optical thickness (Fig. 6(
The flow pattern consists of two cells. The appearanc
two cells is explained by the fact that a great deal of rad
energy does not reach the central region of the melt. The
cible is incapable of sufficiently heating the bulk of the me
This leads to low temperatures at the central region w
compared to the crucible walls and the axis. Cooling of
core has been reported by Xiao and Derby [1] for simula
of GGG melt (Pr = 6). The lower temperature in the co
drives two convective loops in the crucible. The inner lo
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Fig. 6. Effect of absorption on flow and thermal fields in the melt.Ar = 1.0, Rr = 0.5, Gr = 2.7× 104, Ma = 535,Rect = 0 (no crystal rotation),ς = 0.0 (no
scattering); (a)τ = 0.0, (b)τ = 0.075, (c)τ = 0.25, (d)τ = 0.75.

Fig. 7. Effect of Marangoni convection on the flow and thermal fields in the melt.Ar = 1.0, Rr = 0.5, Gr = 2.7× 104, Rect = 0 (no crystal rotation),ς = 0.0
(no scattering);τ = 0.25, (a)Ma= 0, (b)Ma= 535.
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(Fig. 6(d)) causes the otherwise deeply convex melt–cry
interface to move up along the axis of the crucible.

The effect of increasing Marangoni number on melt c
vection is brought out in Fig. 7. Surface tension gradie
increase shear at the melt–gas interface. Hence the cen
the flow pattern shifts vertically upwards. There is a m
ginal intensification of the flow field as brought out by
increase in the maximum value of the stream function. Th
buoyancy and surface tension gradients are additive in te
f

of driving the flow field. The change in the thermal field
however, marginal, for the range of parameters studied.

Streamlines and isotherms in the YAG melt subject
crystal rotation are shown in Fig. 8. The effect of rotat
is to give rise to multiple cells in the crucible, even wh
the optical thickness is zero. As the optical thickness
creases, much of the radiant energy is absorbed nea
crucible wall. Hence, the central region between the w
and the axis gets progressively cooler. As a result, the i
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Fig. 8. Effect of absorption on flow and thermal fields in the melt.Ar = 1.0, Rr = 0.5, Gr = 2.7× 104, Ma = 535,Rect = 408 (with crystal rotation),ς = 0.0
(no scattering); (a)τ = 0.0, (b)τ = 0.075, (c)τ = 0.25, (d)τ = 0.75.
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forced convection loop gets strengthened. The melt–cry
interface shape is a wavy pattern due to the two convec
loops, even whenτ = 0. The extent of waviness increas
as the optical thickness increases. However, absorption
marginally affects the rotationally driven thermal field. Th
observation is in agreement with the predictions of Xiao
Derby [2], who reported that the increase in crystal rotat
rate does not appreciably change the high thermal grad
melt.

4.2.2. Effect of scattering
Scattering of radiation is present in YAG as well as YA

doped with Nd particles. Scattering only redirects the stre
of photons; it does not directly affect the energy content
given volume. Hence, it influences the radiative mode of h
transfer in an indirect manner. While absorbed energy is c
verted into internal energy of the medium, scattered en
is simply redirected and appears as augmentation alon
other direction. The re-direction of radiant energy indirec
affects the temperature field in the melt. It is to be noted
the expression for divergence of radiative heat flux (Eq.
does not contain the scattering coefficient. Instead, it co
into picture in RTE (Eq. (5)).

The influence of scattering on the flow and tempera
fields in the YAG melt are shown in Fig. 9. The optic
thickness of the melt for this sequence of calculations
t

-

been kept constant atτ = 0.75 while the scattering coeffi
cient is varied over the range 0–1000 m−1. The correspond
ing albedo of scattering (̃β) varies over 0 to 0.995. Th
crystal is stationary in these calculations. Broadly spe
ing, the influence of scattering on the convection patte
is seen to be minor over the range of parameters stud
The influence on the flow and thermal fields is truly
significant forς < 10.0 m−1, namelyβ̃ < 0.83. At higher
values, scattering is observed to have an opposite influ
as compared to absorption. This is understandable bec
scattering augments the irradiation and penetrates de
into the crucible, partly nullifying the effect of the absor
tion coefficient. The augmentation is quite pronounced
high values of the scattering coefficient. The isotherms
be seen to shift towards the colder crystal surface (a
from the crucible wall) with an increase in the scatter
coefficient. Thus, the thermal gradients tend to spread
more evenly within the crucible. The flow field, initiall
distorted in the absence of scattering, is more organi
as the scattering coefficient increases. Since the temp
ture gradients are now present over a greater portion o
crucible cross-section, the intensity of flow field increa
(specifically, the magnitude of the stream function) with
increase in the scattering coefficient. The center of the c
vection cell shifts downwards, towards the axis of the c
cible.
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Fig. 9. Effect of scattering on flow and thermal fields in the melt.Ar = 1.0, Rr = 0.5, Gr = 2.7× 104, Ma = 535,Rect = 0 (no crystal rotation);τ = 0.25, (a)
ς = 0.0 m−1 (β̃ = 0.0), (b)ς = 25.0 m−1 (β̃ = 0.83), (c)ς = 500.0 m−1 (β̃ = 0.99), (d)ς = 1000.0 m−1 (β̃ = 0.995).
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The influence of scattering in a rotationally driven flo
field is shown in Fig. 10. The streamlines and isotherms
barely affected till the scattering albedo reaches 0.995. T
it can be concluded that the role of scattering is insignific
when the melt is driven by crystal rotation.

4.3. Internal radiation in the presence of crystal and
enclosure

In a full Czochralski process, internal radiation is e
pected to be significant in the grown crystal as well.
the present section, flow and heat transfer in the comp
Czochralski system comprising of semi-transparent melt
crystal are considered. The generalized equation of radi
transfer in a discrete direction is solved for the complete
main (involving melt, crystal and gas). Provision is made
account for local radiative properties in the appropriate
terial, and abrupt changes in radiative properties acros
zone boundaries. The intensity field thus obtained is use
evaluate the divergence of the radiative heat flux at all
cations in the Czochralski apparatus. The RTE is solve
the entire domain of the apparatus subjected to symm
boundary condition at the axis, while other walls are
sumed to be diffusely emitting and reflecting opaque g
surfaces.
,

4.3.1. Effect of absorption
Fig. 11 shows streamlines and isotherms when abs

tion through the crystal alone is considered. The me
assumed to be transparent (κm = 0) in this calculation. For
a higher absorption coefficient of the crystal (κc), i.e., for
a less transparent crystal, axial heat transfer is augme
by absorption of radiation from the crucible walls. Sub
quently, energy is lost to the enclosure, resulting in a lo
temperature level in the crystal. The higher average tem
ature difference between the melt and the crystal margin
increases the strength of melt flow, increasing further with
increase in the absorption coefficient of the crystal. Ow
to increased cooling of the crystal the melt–crystal in
face moves deeper towards the melt. Since a higher op
thickness cools the crystal, the pull velocity required for
growth of a constant diameter crystal increases with abs
tion coefficient.

Fig. 12 shows streamlines and isotherms in the gro
apparatus, when both the crystal and the melt region are
sidered to be semi-transparent. The absorption in the
results in shifting of the isotherms closer to the hot c
cible wall. As a result the centre of the convection cell sh
towards the crucible side wall. The strength of flow is dim
ished as the optical thickness increases, a result discuss
Section 4.2.1. In case of very high absorption, the temp



J. Banerjee, K. Muralidhar / International Journal of Thermal Sciences 45 (2006) 151–167 163
Fig. 10. Effect of scattering on flow and thermal fields in the melt with crystal rotation.Ar = 1.0, Rr = 0.5, Gr = 2.7× 104, Ma= 535,Rect = 408;τ = 0.25,
(a)ς = 0.0 m−1 (β̃ = 0.0), (b)ς = 25.0 m−1 (β̃ = 0.83), (c)ς = 500.0 m−1 (β̃ = 0.99), (d)ς = 1000.0 m−1 (β̃ = 0.995).
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ture of the central core is low enough, leading to the form
tion of two convective cells. The solidification of the cent
core at very high optical thickness cannot be ruled out. W
both the melt and crystal have a low optical thickness,
melt–crystal interface is observed to be convex towards
melt. The convexity decreases with an increase in the op
thickness; at very high values, the interface becomes
cave. The cooling of the crystal accompanied by the coo
at the core of the crucible results in a significant increas
pull velocity.

The above discussion shows that radiation interaction
significance are between the crucible and the melt on
hand, and the crystal with the enclosure. These influenc
shape of the melt–crystal interface and the pull velocity. T
direct interaction between the melt and the crystal is onl
secondary importance.

4.3.2. Effect of scattering
Scattering has a minor effect on the overall convec

field, since it only serves to re-distribute energy. At hig
values of optical thickness, the influence of scattering
barely visible. Scattering within the crystal slightly increas
its temperature, and results in a marginal reduction in
strength of melt flow. Since the crystal is slightly hea
due to scattering, the melt–crystal is less convex. Sca
ing in the melt, on the other hand, results in heating of
central core below the crystal. The higher temperature
ference with respect to the melt–crystal interface leads t
intensification of buoyant flow. A marginal reduction in t
pull velocity is seen due to slight heating of the crystal wh
it acts as a scattering medium. When both the melt and
crystal scatter radiation, there is a marginal increase in
pull velocity. These results have been discussed furthe
[24].

4.3.3. Influence of crystal length
Fig. 13 shows the temperature distribution and melt fl

pattern during two stages of crystal pulling process. Th
stages correspond to an increase in crystal length and t
reduction in melt height. At each stage, two separate c
are considered.

(1) Melt is transparent while crystal is semi-transpar
(τc = 0.25); and

(2) The melt and the crystal are both semi-transparent (τm =
0.25,τc = 0.25).

It can be observed that at both stages, the strength of
marginally increases when the crystal is semi-transpa
while the combined effect of absorption in both the m
and crystal is to cool the core of the melt in the crucib
This retards the strength of flow. At the last stage of gro



164 J. Banerjee, K. Muralidhar / International Journal of Thermal Sciences 45 (2006) 151–167
Fig. 11. Effect of absorption in the crystal on flow and thermal fields in the full domain of the Czochralski apparatus.Ar = 0.9, Rr = 0.5, Hr = 0.5,
T∞ = 1400 K,Tw = 2403 K,Gr = 2.16×104, Ma= 475,Rect = 0 (stationary crystal),τm = 0.0; (a)τc = 0.075, (b)τc = 0.75, (c)τc = 5.0, (d) melt–crystal
interface shapes for (a)–(c).
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(very low melt height), the cooling of the core results
the development of two convective cells in the crucible. T
melt–crystal interface gets deeply convex towards the m
due to absorption in the crystal. When both the melt
the crystal are semi-transparent, the cooling at the cor
sults in inversion of the melt–crystal interface. This sho
that enclosure temperature can certainly be used to co
losses from the melt and the crystal, even when the
dia are radiatively participating. The enclosure tempera
provides an extra degree of freedom to adjust the inter
shape.

4.3.4. Effect of absorption and scattering on pull velocity
One of the significant aspects of the Czochralski proc

is the need to control pull velocity so as to grow a cons
diameter crystal. If the pull velocity is high in comparison
the crystallization speed, the diameter progressively dim
ishes. Conversely, there is an increase in the crystal diam
l

.

The correct pull velocity can be obtained by applying
Stefan condition for change of phase from the melt to
crystal [27]. This condition requires that the difference
tween the melt and the crystal heat fluxes is balanced
the rate of latent heat release. Clearly, changes in the
fluxes in the respective phases, possibly due to absor
and scattering, affect the pull velocity. Specifically, a hig
temperature gradient in the crystal raises the pull velo
In the present study, the pull velocity required to mainta
constant crystal diameter has been evaluated at the ed
the crystal.

Pull velocity has been observed to increase with an
crease in the optical thickness either in the melt or the c
tal. As the absorption in the crystal is increased the heat
through the crystal also increases, resulting, in an increa
the pull velocity. An increase in absorption in the melt on
other hand displaces the isotherms towards the crucible
thereby decreasing the heat flux from the melt side. Thi
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Fig. 12. Effect of absorption in both the melt and the crystal phase, on flow and thermal fields in the full domain of the Czochralski apparatus.Ar = 0.9,
Rr = 0.5, Hr = 0.5, T∞ = 1400 K,Tw = 2403 K, Gr = 2.16× 104, Ma = 475, Rect = 0 (stationary crystal); (a)τc = 0.075, τm = 0.075, (b)τc = 0.25,
τm = 0.25, (c)τc = 0.75,τm = 0.75, (d) melt–crystal interface shapes for (a)–(c).
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turn increases the pull velocity. Thus, the combined effec
absorption in the melt as well as the crystal is to raise
pull velocity required for maintaining a constant crystal
ameter. For an increase in the optical thickness from ze
0.75 in the melt and the crystal, the pull velocity was fou
to increase from 1.2 mm·h−1 to 2.8 mm·h−1, for the para-
meters in Fig. 11.

Scattering has an opposite effect on pull velocity va
tion. Scattering in the crystal heats up the crystal leadin
a reduction in the interfacial heat flux and hence the pull
locity.

4.3.5. Effect of crystal rotation
As the crystal is rotated, fluid particles in the melt acqu

a tangential velocity component in the horizontal plane,
in turns sets up a radially outward component of accel
tion. This creates a low pressure region below the cry
Consequently, the hot melt from the base of the cruc
moves vertically upwards, along the crystal axis. The c
vective cell thus formed is in the clockwise direction. T
resulting isotherms are pushed up along the centre-lin
the crucible and the high temperature melt is moved rad
along the crystal boundary. Under these conditions, t
mal gradients are predominantly fixed by the mixing of flu
particles induced by rotation. Consequently, the effect of
sorption (as well as scattering) is minimal in a rotationa
driven flow field.

5. Conclusions

The effects of internal radiation in the Czochrals
process on flow and thermal fields in the melt as wel
the overall growth process have been studied. The con
tive field is sensitive to the optical thickness, but depe
only weakly on the scattering albedo. Absorption in



166 J. Banerjee, K. Muralidhar / International Journal of Thermal Sciences 45 (2006) 151–167

al leng
Fig. 13. Effect of absorption in the melt and crystal on flow and thermal fields in the full domain of the Czochralski process with increase in crystth;
Rr = 0.5, T∞ = 1400 K,Tw = 2403 K,Gr = 2.16× 104, Ma = 475,Rect = 0, (a)Ar = 0.775,Hr = 1, τc = 0.25,τm = 0, (b)Ar = 0.775,Hr = 1, τc = 0.25,
τm = 0.25, (c) melt–crystal interface shapes for (a), (b). (d)Ar = 0.65, Hr = 1.5, τc = 0.25, τm = 0, (e) Ar = 0.65, Hr = 1.5, τc = 0.25, τm = 0.25,
(f) melt–crystal interface shapes for (d), (e).
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melt is a maximum near the hot crucible walls. As the
tical thickness increases, densely packed isotherms nea
crucible wall are formed. For very high absorption, a l
temperature region is formed at the core of the cruci
Intense cooling of the core at a high value of optical thi
ness generates two convective cells in the melt flow. A
consequence a wavy shape of the interface, concave a
center and convex towards the edge of the crystal is
served.

Influence of scattering on the convective field in the m
is observed only at high values of the scattering albedo. W
an increase in scattering, the isotherms are seen to shi
wards the colder crystal surface (away from the cruc
wall). As a consequence there is a slight increase in
strength of the flow field and a shift in the center of the c
vection loop. In addition, the convexity of the melt–crys
interface is slightly reduced.
e

e

-

Absorption results in cooling of the crystal and increa
the pull velocity required for growth of a constant diam
ter crystal. The melt–crystal interface gets deeply con
due to crystal cooling. Scattering on the other hand res
in marginal heating of the crystal. The combined effect
absorption in the melt and crystal can lead to solidifi
tion of the melt at its core. The temperature of the en
sure is seen to influence the melt–crystal interface sh
when absorption in both the crystal and the melt are c
sidered.

The impact of internal radiation diminishes in the pr
ence of crystal rotation.
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